INICIAR SESIÓN REGISTRO
Otros

Premio Nobel de Medicina y Fisiología 2019

Octubre 7, 2019

El día 07 de Octubre el comité del Premio Nobel en el Instituto Karolinska anunció la decisión de otorgar dicha condecoración a los Dres. William G. Kaelin, Jr. (Howard Hughes Medical Institute), Sir Peter J. Ratcliffe (Francis Crick Institute) y Gregg L. Semenza (Johns Hopkins Institute) por sus descubrimientos relacionados con cómo las células pueden detectar y adaptarse a los cambios en la disponibilidad de oxígeno. Identificaron maquinaria molecular que regula la actividad de los genes en respuesta a niveles variables de oxígeno.

Establecieron las bases para nuestra comprensión de cómo los niveles de oxígeno afectan el metabolismo celular y la función fisiológica. Sus descubrimientos también han allanado el camino para nuevas y prometedoras estrategias para combatir la anemia, el cáncer y muchas otras enfermedades.

El cuerpo carotídeo, contiene células especializadas que detectan los niveles de oxígeno en la sangre. El Premio Nobel de Fisiología y Medicina de 1938 a Corneille Heymans otorgó descubrimientos que muestran cómo la detección de oxígeno en la sangre a través del cuerpo carotídeo controla nuestra frecuencia respiratoria al comunicarse directamente con el cerebro. Además de la adaptación rápida controlada por el cuerpo carotídeo a niveles bajos de oxígeno (hipoxia), existen otras adaptaciones fisiológicas fundamentales. Una respuesta fisiológica clave a la hipoxia es el aumento de los niveles de la hormona eritropoyetina (EPO), que conduce a una mayor producción de glóbulos rojos (eritropoyesis). La importancia del control hormonal de la eritropoyesis ya se conocía a principios del siglo XX, pero la forma en que este proceso fue controlado por el O2 siguió siendo un misterio. Gregg Semenza estudió el gen EPO y cómo está regulado por niveles variables de oxígeno. Al usar ratones modificados con genes, se demostró que segmentos específicos de ADN ubicados al lado del gen EPO median la respuesta a la hipoxia. Sir Peter Ratcliffe también estudió la regulación dependiente de O2 del gen EPO, y ambos grupos de investigación encontraron que el mecanismo de detección de oxígeno estaba presente en prácticamente todos los tejidos, no solo en las células renales donde normalmente se produce EPO. Estos fueron hallazgos importantes que muestran que el mecanismo era general y funcional en muchos tipos de células diferentes. Semenza deseaba identificar los componentes celulares que median esta respuesta. En las células hepáticas cultivadas descubrió un complejo proteico que se une al segmento de ADN identificado de una manera dependiente del oxígeno. Llamó a este complejo el Factor Inducible por Hipoxia (HIF). Se iniciaron grandes esfuerzos para purificar el complejo HIF, y en 1995, Semenza pudo publicar algunos de sus hallazgos clave, incluida la identificación de los genes que codifican HIF. Se descubrió que HIF consistía en dos proteínas de unión a ADN diferentes, llamadas factores de transcripción, ahora llamados HIF-1α y ARNT. Ahora los investigadores podrían comenzar a resolver el rompecabezas, permitiéndoles comprender qué componentes adicionales estaban involucrados y cómo funciona la maquinaria.

La asociación con VHL.

Cuando los niveles de oxígeno son altos, las células contienen muy poco HIF-1α. Sin embargo, cuando los niveles de oxígeno son bajos, la cantidad de HIF-1α aumenta para que pueda unirse y así regular el gen EPO y otros genes con segmentos de ADN que se unen a HIF. Varios grupos de investigación mostraron que HIF-1α, que normalmente se degrada rápidamente, está protegido de la degradación en la hipoxia. A niveles normales de oxígeno, una máquina celular llamada proteasoma degrada el HIF-1α. En tales condiciones, se agrega un péptido pequeño, ubiquitina, a la proteína HIF-1α. La ubiquitina funciona como una etiqueta para proteínas destinadas a la degradación en el proteasoma. ¿Cómo la ubiquitina se une al HIF-1α de manera dependiente del oxígeno? siguió siendo una pregunta fundamental. La respuesta vino de una dirección inesperada. Casi al mismo tiempo que Semenza y Ratcliffe estaban explorando la regulación del gen EPO, el investigador del cáncer William Kaelin, Jr. estaba investigando un síndrome hereditario, la enfermedad de Von Hippel-Lindau (enfermedad de VHL). Esta enfermedad genética conduce a un riesgo dramáticamente mayor de ciertos tipos de cáncer en familias con mutaciones de VHL heredadas. Kaelin demostró que el gen VHL codifica una proteína que previene la aparición de cáncer. Kaelin también mostró que las células cancerosas que carecen de un gen VHL funcional expresan niveles anormalmente altos de genes regulados por hipoxia; pero que cuando el gen VHL se reintrodujo en las células cancerosas, se restablecieron los niveles normales. Esta fue una pista importante que muestra que la VHL estuvo de alguna manera involucrada en el control de las respuestas a la hipoxia. Se obtuvieron pistas adicionales de varios grupos de investigación que muestran que VHL es parte de un complejo que etiqueta las proteínas con ubiquitina, marcándolas para la degradación del proteasoma. Ratcliffe y su grupo de investigación hicieron un descubrimiento clave: demostrar que VHL puede interactuar físicamente con HIF-1α y es necesario para su degradación a niveles normales de oxígeno. Esto vinculó definitivamente a VHL y HIF-1α.

El oxígeno aumenta el equilibrio

Muchas piezas habían caído en su lugar, pero lo que aún faltaba era una comprensión de cómo los niveles de O2 regulan la interacción entre VHL y HIF-1α. La búsqueda se centró en una porción específica de la proteína HIF-1α que se sabe que es importante para la degradación dependiente de VHL, y tanto Kaelin como Ratcliffe sospecharon que la clave para la detección de O2 residía en algún lugar de este dominio proteico. En 2001, en dos artículos publicados simultáneamente, mostraron que bajo niveles normales de oxígeno, se agregan grupos hidroxilo en dos posiciones específicas en HIF-1α . Esta modificación de la proteína, llamada prolil hidroxilación, permite que VHL reconozca y se una a HIF-1α y, por lo tanto, explica cómo los niveles normales de oxígeno controlan la degradación rápida de HIF-1α con la ayuda de enzimas sensibles al oxígeno (llamadas prolil hidroxilasas). Investigaciones posteriores de Ratcliffe y otros identificaron las prolil hidroxilasas responsables. También se demostró que la función de activación de genes de HIF-1α estaba regulada por hidroxilación dependiente de oxígeno. Los premios Nobel ahora habían aclarado el mecanismo de detección de oxígeno y habían demostrado cómo funciona.

El oxígeno da forma a la fisiología y la patología.

Gracias al trabajo innovador de estos premios Nobel, sabemos mucho más sobre cómo los diferentes niveles de oxígeno regulan los procesos fisiológicos fundamentales. La detección de oxígeno permite a las células adaptar su metabolismo a niveles bajos de oxígeno: por ejemplo, en nuestros músculos durante el ejercicio intenso. Otros ejemplos de procesos adaptativos controlados por la detección de oxígeno incluyen la generación de nuevos vasos sanguíneos y la producción de glóbulos rojos. Nuestro sistema inmunológico y muchas otras funciones fisiológicas también están afinadas por la maquinaria de detección de O2. Incluso se ha demostrado que la detección de oxígeno es esencial durante el desarrollo fetal para controlar la formación normal de vasos sanguíneos y el desarrollo de placenta. La detección de oxígeno es fundamental para una gran cantidad de enfermedades. Por ejemplo, en los tumores, la maquinaria regulada por oxígeno se utiliza para estimular la formación de vasos sanguíneos y remodelar el metabolismo para la proliferación efectiva de células cancerosas. Intensos esfuerzos continuos en laboratorios académicos y compañías farmacéuticas ahora se centran en el desarrollo de medicamentos que pueden interferir con diferentes estados de enfermedad al activar o bloquear la maquinaria de detección de oxígeno.

Iniciar Sesión

Al iniciar sesión, aceptas nuestros
Términos de Uso y Política de Privacidad.

Recuperar Contraseña

Se enviará un correo electrónico a
esta dirección para recuperar su contraseña.